Author Affiliations
Abstract
1 Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
2 Technische Universität Dresden, Dresden, Germany
3 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
4 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai, China
5 Institute of Plasma Physics, Czech Academy of Sciences, Prague, Czech Republic
6 Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague, Czech Republic
7 Department of Physics, Jagannath University, Dhaka, Bangladesh
8 ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
9 Institute for Nuclear Physics, Technical University of Darmstadt, Darmstadt, Germany
10 Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
11 Blackett Laboratory, Imperial College, London, United Kingdom
12 First Light Fusion, Oxford Industrial Park, Yarnton, Oxford, United Kingdom
A new approach to target development for laboratory astrophysics experiments at high-power laser facilities is presented. With the dawn of high-power lasers, laboratory astrophysics has emerged as a field, bringing insight into physical processes in astrophysical objects, such as the formation of stars. An important factor for success in these experiments is targetry. To date, targets have mainly relied on expensive and challenging microfabrication methods. The design presented incorporates replaceable machined parts that assemble into a structure that defines the experimental geometry. This can make targets cheaper and faster to manufacture, while maintaining robustness and reproducibility. The platform is intended for experiments on plasma flows, but it is flexible and may be adapted to the constraints of other experimental setups. Examples of targets used in experimental campaigns are shown, including a design for insertion in a high magnetic field coil. Experimental results are included, demonstrating the performance of the targets.
high magnetic fields laboratory astrophysics laser–plasma interaction magnetized plasmas target design 
High Power Laser Science and Engineering
2023, 11(2): 02000e17
作者单位
摘要
1 山西大学, 物理电子工程学院山西 太原 030006
2 山西大学, 极端光学协同创新中心山西 太原 30006
本文研究了一个循环四能级原子系统中的增益相位光栅效应,基于微扰理论,用密度矩阵方法计算了稳态条件下信号场的极化率,分析了影响信号场衍射效率的相关因素。结果表明,在循环四能级原子介质中,合适的抽运场、调制场和耦合场共同作用,使得信号场产生增益。当光场失谐较小时,利用抽运场、调制场和耦合场可以调控信号场的振幅和相位,使信号场的能量放大,并将能量从零阶衍射方向转移到高阶衍射方向。当抽运场拉比频率约为1.67γ时,一阶衍射效率急剧增加,说明在调控过程中有阈值产生。该光栅在全光开关、全光调制、全光逻辑门等新型光子器件中具有重要的应用。
量子光学 循环四能级原子介质 增益相位光栅 
量子光学学报
2022, 28(3): 208
作者单位
摘要
1 北京建筑材料科学研究总院有限公司,固废资源化利用与节能建材国家重点实验室, 北京 100041
2 河北睿索固废工程技术研究院有限公司, 承德 067000
3 北京环境工程技术有限公司, 北京 100101
4 北京市城镇生活固废综合处理与资源化工程技术研究中心, 北京 100101
以铁尾矿多孔陶瓷为载体, 通过自发浸渗法成功制备出了添加石墨烯的复合相变储能材料, 并对该材料热学性能及稳定性进行测试。结果表明: 通过改变载体孔隙率, 可以制得导热系数为0.41~0.59 W/(m·K)、潜热为69~120 kJ/kg、热学稳定性良好的导热增强复合相变储能材料。通过拟合, 复合相变储能材料的导热系数与多孔载体的孔隙率呈线性关系, 且经100次热循环后材料熔化潜热和导热系数分别降低了3.2%和16.7%。本研究为固废铁尾矿在蓄热、储能领域的应用提供了新思路。
石蜡 复合相变储能材料 铁尾矿多孔陶瓷 石墨烯 热学性能 热学稳定性 paraffin composite phase change material for energy storage iron tailing porous ceramics grapheme thermal property thermal stability 
硅酸盐通报
2022, 41(7): 2542
作者单位
摘要
1 西华大学 电气与电子信息学院, 成都60039
2 中国空气动力研究与发展中心 高速空气动力研究所,四川绵阳61000
为了提高平面、近平面和近线等奇异构型目标点的位姿估计精度和稳定性,提出了面向奇异构型目标点分布的位姿估计算法。首先,选择距离最远的两个点作为基本目标点,将n点划分为n-2个三点子集。其次,根据三点子集的几何关系构建辅助点,旨在增加透射相似三角形法的几何约束,进而求得较为准确的相机位姿初值。最后,结合EPnP算法和高斯牛顿算法进行迭代优化,通过奇异值分解求得最终位姿。测量实验结果表明,当平面目标点数n=4时,正交迭代算法、EPnP算法和IEPnP算法的像方平均重投影误差分别为0.062 mm、0.324 mm和 2.238 mm,本文算法的像方平均重投影误差为0.003 mm,有效提高了奇异构型下目标点的位姿估计精度和稳定性。
机器视觉 位姿估计 PnP问题 透视投影 Machine vision Pose estimation PnP problem Perspective projection 
光子学报
2021, 50(7): 285
Author Affiliations
Abstract
1 Blackett Laboratory, Imperial College London, London, UK
2 First Light Fusion Ltd, Yarnton, UK
3 LERMA, Sorbonne-Université, Observatoire de Paris, CNRS, France
4 ELI Beamlines Center, Institute of Physics, Czech Academy of Sciences, Dolni Brezany, Czech Republic
5 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
6 Instituto de Fusión Nuclear Guillermo Velarde, Universidad Politécnica de Madrid, Madrid, Spain
7 AWE plc., Aldermaston, Reading, UK
8 Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Chilton, Didcot, UK
9 University of Michigan, Ann Arbor, MI, USA
10 Current affiliation: Magdrive Ltd, Harwell, UK
We report on the design and first results from experiments looking at the formation of radiative shocks on the Shenguang-II (SG-II) laser at the Shanghai Institute of Optics and Fine Mechanics in China. Laser-heating of a two-layer CH/CH–Br foil drives a $\sim 40$ km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar. The use of gas-cell targets with large (several millimetres) lateral and axial extent allows the shock to propagate freely without any wall interactions, and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved, point-projection X-ray backlighting ($\sim 20$ μm source size, 4.3 keV photon energy). Single shocks were imaged up to 100 ns after the onset of the laser drive, allowing to probe the growth of spatial nonuniformities in the shock apex. These results are compared with experiments looking at counter-propagating shocks, showing a symmetric drive that leads to a collision and stagnation from $\sim 40$ ns onward. We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN, which provides expected plasma parameters for the design of future experiments in this facility.
high energy density physics laboratory astrophysics plasma physics high-power laser laser-driven shocks experiments X-ray backlighting X-ray radiography 
High Power Laser Science and Engineering
2021, 9(2): 02000e27
林炜恒 1,2,3,*朱健强 1,2任磊 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
2 中国科学院中国工程物理研究院高功率激光物理联合实验室, 上海 201800
3 中国科学院大学, 北京 100049
靶定位与束靶耦合技术是激光聚变实验过程中最为关键的技术之一,是关系整个激光聚变实验成败的重要技术。综述了从20世纪70年代至今较为有代表性的各高功率激光驱动装置的靶定位与束靶耦合技术方案,讨论了设计技术方案的基本原则,总结了已有方案各自的优势与缺陷,并对一些新方法进行了展望。
激光器 惯性约束核聚变 束靶耦合技术 靶定位技术 光束指向 靶场 
中国激光
2020, 47(4): 0400001
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai 201800, China
2 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Shanghai Institute of Laser Plasma, Chinese Academy of Engineering and Physics, Shanghai 201800, China
In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics (NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade (SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion (ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.
high-power laser facility inertial confinement fusion solid-state amplifier 
High Power Laser Science and Engineering
2018, 6(4): 04000e55
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Shanghai Institute of Laser Plasma, Shanghai 201800, China
In high power laser facility for inertial confinement fusion research, final optics assembly (FOA) plays a critical role in the frequency conversion, beam focusing, color separation, beam sampling and debris shielding. The design and performance of FOA in SG-II Upgrade laser facility are mainly introduced here. Due to the limited space and short focal length, a coaxial aspheric wedged focus lens is designed and applied in the FOA configuration. Then the ghost image analysis, the focus characteristic analysis, the B integral control design and the optomechanical design are carried out in the FOA design phase. In order to ensure the FOA performance, two key technologies are developed including measurement and adjustment technique of the wedged focus lens and the stray light management technique based on ground glass. Experimental results show that the design specifications including laser fluence, frequency conversion efficiency and perforation efficiency of the focus spot have been achieved, which meet the requirements of physical experiments well.
final optics assembly high power laser facility inertial confinement fusion. 
High Power Laser Science and Engineering
2018, 6(2): 02000e14
Lei Ren 1,2,†Ping Shao 1,2Dongfeng Zhao 1,2Yang Zhou 1,2[ ... ]Zunqi Lin 1,2
Author Affiliations
Abstract
1 National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Shanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China
The Shen-Guang II Upgrade (SG-II-U) laser facility consists of eight high-power nanosecond laser beams and one short-pulse picosecond petawatt laser. It is designed for the study of inertial confinement fusion (ICF), especially for conducting fast ignition (FI) research in China and other basic science experiments. To perform FI successfully with hohlraum targets containing a golden cone, the long-pulse beam and cylindrical hohlraum as well as the short-pulse beam and cone target alignment must satisfy tight specifications (30 and $20~\unicode[STIX]{x03BC}\text{m}$ rms for each case). To explore new ICF ignition targets with six laser entrance holes (LEHs), a rotation sensor was adapted to meet the requirements of a three-dimensional target and correct beam alignment. In this paper, the strategy for aligning the nanosecond beam based on target alignment sensor (TAS) is introduced and improved to meet requirements of the picosecond lasers and the new six LEHs hohlraum targets in the SG-II-U facility. The expected performance of the alignment system is presented, and the alignment error is also discussed.
laser drivers petawatt lasers spherical hohlraum target alignment target area 
High Power Laser Science and Engineering
2018, 6(1): 01000e10
Author Affiliations
Abstract
National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, No. 390, Qinghe Road,Jiading District, Shanghai 201800, China
A model to calculate the optical field distribution of quadruplet beams on a hohlraum target wall is pre-sented. This model combines geometrical ray tracing, coordinate transformation, and Fresnel diffractionintegral to capture the quadruplet beams propagating in four different directions and the typically non-planar geometry of the hohlraum wall. The results demonstrate that the optical field distribution arisesmainly from individual beam diffraction, and the interference with other beams in the quadruplet hardlydevotes to the distribution. A movie is also produced to interpret the spatio and temporal evolution ofthe optical field on a cylindrical hohlraum wall.
Optical field distribution Hohlraum target Quadruplet beams ICF 
Collection Of theses on high power laser and plasma physics
2016, 14(1): 3629–3632

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!